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ABSTRACT 

We show that there exists a purely infinite AH-algebra. The AH-algebra 

arises as an inductive limit of C*-algebras of the form C0([0, 1), Mk) and 

it absorbs the Cuntz algebra Oc~ tensorially. Thus one can reach an Ooo- 

absorbing C*-algebra as an inductive limit of the finite and elementary 

C*-algebras Co(J0, 1), Mk). 

As an application we give a new proof of a recent theorem of Ozawa 

that the cone over any separable exact C*-algebra is AF-embeddable, and 

we exhibit a concrete AF-algebra into which this class of C*-algebras can 

be embedded. 

1. I n t r o d u c t i o n  

Simple C*-algebras are divided into two disjoint subclasses: those that are stably 

finite and those that are stably infinite. (A simple C*-algebra A is stably infinite 

if A ® ~ contains an infinite projection, and it is stably finite otherwise.) All 

simple, stably finite C*-algebras admit a non-zero quasi-trace, and all exact, 

simple, stably finite C*-algebras admit a non-zero trace. 

A (possibly non-simple) C*-algebra A is in [12] defined to be pure ly  infinite 

if no non-zero quotient of A is abelian and if for all positive elements a, b in 

A, such that b belongs to the closed two-sided ideal generated by a, there is a 

sequence {x~} of elements in A with x~axn ~ b. Non-simple purely infinite C*- 

algebras have been investigated in [12], [13], and [3]. All simple purely infinite 

C*-algebras are stably infinite, but the opposite does not hold, cf. [17]. 
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The condition on a (non-simple) C*-algebra A, that all projections in A ® K 

are finite, does not ensure existence of (partially defined) quasi-traces. There are 

stably projectionless purely infinite C*-algebras--  take for example 

Co(R) ® Oct, where O ~  is the Cuntz algebra generated by a sequence of isome- 

tries with pairwise orthogonal range projections--and purely infinite C*-alge- 

bras are traceless. 

That  stably projectionless purely infinite C*-algebras can share properties 

that one would expect are enjoyed only by finite C*-algebras was demonstrated 

in a recent paper by Ozawa, [16], in which is it shown that the suspension and 

the cone over any separable, exact C*-algebra can be embedded into an AF- 

algebra. (It seems off hand reasonable to characterize AF-embeddability as a 

finiteness property.) In particular, Co(N) ® O ~  is AF-embeddable and at the 

same time purely infinite and traceless. It is surprising that one can embed a 

traceless C*-algebra into an AF-algebra, because AF-algebras are well-supplied 

with traces. If F: Co(N) ® (.9oo --+ A is an embedding into an AF-algebra A, 

then Im(~) N Dom(T) C_ Ker(r) for every trace T on A. This can happen only 

if the ideal lattice of A has a sub-lattice isomorphic to the interval [0, 1] (see 

Proposition 4.3). In particular A cannot be simple. 

Voiculescu's theorem, that the cone and the suspension over any separable 

C*-algebra is quasi-diagonal, [19], is a crucial ingredient in Ozawa's proof. 

By a construction of Mortensen, [15], there is to each totally ordered, compact, 

metrizable set T an AH-algebra .AT with ideal lattice T (cf. Section 2). A C*- 

algebra is an AH-algebra, in the sense of Blackadar [1], if it is the inductive limit 

of a sequence of C*-algebras each of which is a direct sum of C*-algebras of the 

form Mn(Co(f~)) = Co(f t, M~) (where n and ft are allowed to vary). We show in 

Theorem 3.2 (in combination with Proposition 5.2) that  the AH-algebra .A[0,1] 

is purely infinite (and hence traceless)--even in the strong sense that it absorbs 

O~ ,  i.e., .A[0,1] ~ A[o,1] ® Ooo-- and .A[0,1] is an inductive limit of C*-algebras 

of the form C0([0, 1), M2-). We can rephrase this result as follows: Take the 

smallest class of C*-algebras, that contains all abelian C*-algebras and that is 

closed under direct sums, inductive limits, and stable isomorphism. Then this 

class contains a purely infinite C*-algebra (because it contains all AH-algebras). 

A word of warning: In the literature, an AH-algebra is often defined to be an 

inductive limit of direct sums of building blocks of the form pC(f}, Mn)p, where 

each ft is a compact Hausdorff space (and p is a projection in C(f}, Mn)). With 

this definition, AH-algebras always contain non-zero projections. The algebras 

we consider, where the building blocs are of the form Co(D, Mn) for some locally 
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compact Hausdorff space, should perhaps be called AH0-algebras to distinguish 

them from the compact case, but hoping that no confusion will arise, we shall 

not distinguish between AH- and AH0-algebras here. 

Every AH-algebra is AF-embeddable. Our Theorem 3.2 therefore gives a new 

proof of Ozawa's result that there are purely infinite--even O~-absorbing-- 

AF-embeddable C*-algebras. Moreover, just knowing that there exists one AF- 

embeddable O~-absorbing C*-algebra, in combination with Kirchberg's theo- 

rem that all separable, exact C*-algebras can be embedded in (9oo, immediately 

implies that the cone and the suspension over any separable, exact C*-algebra is 

AF-embeddable (Theorem 4.2). This observation yields a new proof of Ozawa's 

theorem referred to above. 

Section 5 contains some results with relevance to the classification program of 

Elliott. In Section 6 we show that .A[0,1] can be embedded into the AF-algebra 

.A~, where ~ is the Cantor set, and hence that the cone and the suspension over 

any separable, exact C*-algebra can be embedded into this AF-algebra. The 

ordered K0-group of .A~ is determined. 

A C K N O W L E D G E M E N T :  I thank Nate Brown for several discussions on quasi- 

diagonal C*-algebras and on the possibility of embedding quasi-diagonal 

C*-algebras into AF-algebras. I thank Eberhard Kirchberg for suggesting the 

nice proof of Proposition 4.1, and I thank the referee for suggesting several 

improvements to the paper. 

2. The  C*-algebras AT 

We review in this section results from Mortensen's paper [15] on how to associate 

a C*-algebra AT with each totally ordered, compact, metrizable set T, so that 

the ideal lattice of .AT is order isomorphic to T. Where Mortensen's algebras 

are inductive limits of C*-algebras of the form Co(T\{maxT}, M2,,(02)), we 

consider plain matrix algebras M2,, in the place of M2~(02). It turns out 

that Mortensen's algebras and those we consider actually are isomorphic when 

T = [0, 1] (see the second paragraph of Section 5). 

Any totally ordered set, which is compact and metrizable in its order topology, 

is order isomorphic to a compact subset of ]~ (where subsets of I~ are given the 

order structure inherited from l~). We shall therefore assume that we are given 

a compact subset T of I~. 

Put tmax = maxT, train = minT, and put To = T\{tma×}. Choose a sequence 

{tn}nC~=l in To such that the tail {tk,tk+l,tk+2,...} is dense in To for every 
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k E N .  

(2.1) 

where 

Let .AT be the inductive limit of the sequence 

Co(To,M ) Co(To, Co(To, ~P3 

(2.2) ~n(f)(t)=(fg t) 0 ) (f(O 0 ) 
/ (max{t ,  tn}) = 0 ( f  o xt,,)(t) ' 

and where for each s in T we let Xs: T ~ T be the continuous function given by 

Xs(t) = max{t, s}. The algebra AT depends a priori on the choice of the dense 

sequence {tn}. The isomorphism class of AT does not depend on this choice 

when T is the Cantor set (as shown in Section 6) or when T is the interval 

[0, 1] (as will be shown in a forthcoming paper, [14]). It is likely that  .AT is 

independent on {tn} for arbi trary T. 

Put  An = Co(To, M2,) = Co(To)®M2~. Let ~oo,n:An "4 .AT and ~m,n: An --+ 
Am, for n < m, denote the inductive limit maps, so that  .AT is the closure of 

Un~__l q:oo,n(An). 

Use the identity Xs o Xt = Xmax{s,t} to see that  

(2.3) 

f ox .x., o ... o ) 
f O Xmax F2 " '"  0 

Vn+ ,n(f) = : : . . .  . 

0 0 . . .  foXmaxF2~ 

(with the convention max O = tmin), where F1, F 2 , . . . ,  F2k is an enumeration of 

the subsets of {tn, t n + l , . . . ,  tn+k-1 }. Note that  Xtmi,, is the identity map on T. 

For each t 6 T and for each n 6 N consider the closed ideal 

(2.4) I ~ n ) d e = f { f c A n i f ( s ) = O w h e n s > t } - ~ C o ( T N [ t m i n , t ) , M ~ , , )  

of An- Observe that  I~In = {0}, I[ n) = An, and I[ n) C I (n) whenever t < s  
1 (n+l) ~ (n )  for all n 6 N. We have ~ (I t ) = I~ for all t and for all n, and so 

oo 
(2.5) Itdef U =  woo,n, ~ (](n)~t ], t • T ,  

n=l 

is a closed two-sided ideal in AT such t ha t  I~ n) = ¢fl~l,n(it ). Moreover, Itmi. = 

{0}, It .... = AT,  and It C Is whenever s, t • T and t < s. 

PROPOSITION 2.1 (cf. Mortensen, [15, Theorem 1.2.1]): Let T be a compact 

subset of ~. Then each dosed two-sided ideal in AT is equal to It for some 
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t • T. It follows that the map t ~ It is an order isomorphism from the ordered 

set T onto the ideal lattice Of.AT. 

Let I be a closed two-sided ideal in .AT. Put  I (n) = qa~l,n(I) <~ Proof: 

Co (To, M2n ) = An, and put 

f-l({0})CT, heN. 
fEI('O 

Then I (n) is equal to the set of all continuous functions f :  T -+ M2- that  vanish 

on Tn. It therefore suffices to show that  there is t in T such that  Tn = Tn[t, tmax] 

for all n, cf. (2.4) and (2.5). Now, 

(2.6) Tn=Tn+IUXt" (Tn+I)=  U )~maxF(Tn+k), n, k e N ,  
FC_Xn,~ 

where Xn,k = {tn, tn+l, . . . , tn+k-1};  because if we let T',k denote the right- 

hand side of (2.6), then for all f • Co(To, M2,,) = An, 

flT,, - -0  ~ f • I (n) ~ ~n+k,n(f) • I (n+k) 

¢=::* Vs • Tn+k : ~n+k,n(f)(s) = 0 

VF C_ Xn,k'!/8 • Tn+k : f(XmaxF(8)) = 0 

¢=~ flT'.,~ -- O. 

It follows from (2.6) that  rain Tn _< min Tn+l for all n; and as 

rain )~t. (Tn+l) = max{tn, min Tn+l } _> rain Tn+l, 

we actually have min Tn = min Tn+x for all n. Let t • T be the common 

minimum. Because t belongs to Tn+k for all k, we can use (2.6) to conclude that  

Tn contains the set {tn, tn+l, tn+2,...} n It, tmax]; and this set is by assumption 

dense in Tn( t ,  tmax]. This proves the desired identity: Tn = TA[t, tmax], because 

T~ is a closed subset of T ;7 [t, tmax] and t belongs to Tn. 1 

PROPOSITION 2.2: .AT is stable for every compact subset T of ]~. 

Proof: Let f be a positive element in the dense subset Cc(To, M2~) of An and 

let m > n be chosen such that  f( t)  = 0 for all t >_ tm-1. Then fOXmaxg ---- 0 for 

every subset F of {tn, tn+l , . . . ,  tin-1 } that  contains tm-1. In the description of 

~m,n(f) in (2.3) we see that  f o XmaxFj = 0 for at least every other j .  We can 
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therefore find a positive function g in Am = Co(To, M2m) such that  g _1_ ~m,n(f) 
and g ~ ~m,n(/)  (the latter in the sense that  x*x = g and xx* = ~m,n(f) for 

some x • Am). It follows from [8, Theorem 2.1 and Proposition 2.2] that  .AT is 

stable. 1 

3. A purely infinite AH-algebra 

We show in this section that  the C*-algebra -4[0,1] is traceless and that  B = 

-410,1] ® M2~ is purely infinite. (In Section 5 it will be shown that  -410,1] ~ B.) 

Following [13, Definition 4.2] we say that  an exact C*-algebra is t r ace l e s s  

if it admits no non-zero lower semi-continuous trace (whose domain is allowed 

to be any algebraic ideal of the C*-algebra). (By restricting to the case of 

exact C*-algebras we can avoid talking about quasi-traces; cf. Haagerup [7] and 

Kirchberg [10].) 

If r is a trace defined on an algebraic ideal Z of a C*-algebra B, and if I is 

the closure of Z, then I contains the Pedersen ideal of I.  In particular, (a - c)+ 

belongs to I for every positive element a in I and for every s > 0. (Here, 

(a - ~)+ = f~(a), where f~(t) = max{t - c,0}. Note that  Ila - (a - s)+ll -< ~.) 

PROPOSITION 3.1: The C*-algebra -41o,1] is traceless. 

Proof: Assume, to reach a contradiction, that  r is a non-zero, lower semi- 

continuous, positive trace defined on an algebraic ideal Z of A[0,1], and let It 
be the closure of 5, cf. Proposition 2.1. Since T is non-zero, It is non-zero, and 

hence t > 0. 
- 1  Identify I[ n) = ~ , n ( I t )  with Co([O,t),M2n). Put  I (~) = ~,n(Z).-1 If x is a 

positive element in I~ n) and if ~ > 0, then 

- c ) + )  = - e 5 ,  

and so (x - ¢)+ 6 Z (n). This shows that  Z (n) is a dense ideal in I (n) and hence t , 

that  S (n) contains Cc([O,t), M2-). 

Let Zn be the trace on z(n) defined by 7n(f) = T(~ ,n ( f ) ) .  We show that  

(3.1) rn(/) = Tr(/(s))d~n(s), / • Cc([0, t),M2~), 

for some Radon measure #n on [0, t) (where Tr denotes the standard unnormal- 

ized trace on M2~). Use Riesz' representation theorem to find a Radon mea- 

sure #~ on [0, t) such that  rn ( f )  = 2nf2f(s)d#n(S) for all f in Cc([O, t), C) C_ 
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Cc([0, t), M2-). Let E: Cc([0, t), M2,~ ) ~ Cc([0, t), C) be the conditional expec- 

tation given by E(f)(t)  = 2 -n  Tr(f( t)) .  Then 

(3.2) E( f )  E K6{ufu* in is a unitary element in C([0, t], M2,~)}, 

for f • Cc([0, t), M2,,), from which we see that  rn(f)  = rn(E(f)). This proves 

that (3.1) holds. Because ttn is a Radon measure, #n([0, s]) < oe for all s • [0, t) 

and for all n • N. 

Let {tn}n~=l be the sequence in T used in the definition of AT. For each n 

and k in N we have r~ = r~+k o ~n+k,n. Set Xk,n = {t~,t~+l,. . .  ,tn+k-1} and 

use (2.3) and (3.1) t o  see that 

o~ Tr(f(s))d/~n(s) = ~.~(:) = Tn+k(:n+k,n(f)) 

= Tr(:n+k,n(f)(s))dpn+k(s) 

Z/oo = T r ( ( f  o ~max(F))(S))d~tn+ k (8) 
FC_Xk,. 

~0 t --1 S = E Tr(f(s))d(p~+k o Xmax(F))( ) 
FC_X~.~ 

for all f • Cc([0, t), /1//2-.). This entails that 

-1 
(3.3) #n = #n+k o Xmax(F), 

FC_X~,,~ 

for all natural numbers n and k. 

We prove next that #n([O, s]) = 0 for all natural numbers n and for all s in 

[O,t). C h o o s e r  such that 0 < s < r < t. Put  Yk,n = Xk :n[O, s ]  and put 

Zk,~ = Xk,~ A [0, r]. Observe that  

(3.4) -1 0 { 0, if v < u, 
~ ( [ ,  v]) = [o, ~], if ~ > ~,, 

whenever u, v • [0, 1]. Use (3.3) and (3.4) to obtain 

(3.5) pn([O,r]) = E ltn+k([O'r]) = 2[Z~'"[#n+k([O'r])" 
FCZk,,~ 

Use (3.3), (3.4), and (3.5) to see that 

~ ( [ 0 , s ] )  = ~ ~ + ~ ( [ o , s ] )  = 2 ' ~ , ° % + ~ ( [ 0 , s ] )  
FCYk,. 

<_ 2[Yk'"] ttn+k ([O, r]) --_ 2--([Zk,. [--[Vk,,, [) itn ([O, r])" 
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A s  

lim ([Zk,n[ -- [Yk,nl) = lim [Xk,n f1 (s,r]l = oo 
k -+ oo k --+ oo 

(because oo X [.Jk=,~ k,,~ = {t,~, t,~+l,.. .} is dense in [0,1)), and as/,,~([0, r]) < oo, 

we conclude that p,~([0, s]) = 0. It follows that p,~([0, t)) = 0, whence #r~ and 

rn are zero for all n. 

However, if r is non-zero, then rn must be non-zero for some n. To see this, 

take a positive element e in Z such that r(e) > 0. Because r is lower semi- 

continuous there is e > 0 such that r((e  - e)+) > 0. Now, Z (n) is dense in I[ ~) 

and Un°°=l (n) ~ooo,n(I~ ) is dense in It D Z. It follows that we can find n E N and 

a positive element f in Z (n) such that I[~o,n( f )  - eli < ¢. Use for example [13, 

Lemma 2.2] to find a contraction d E A such that d*~ooo,n(f)d = (e - ¢)+. Put  

x = qoco,n(f)l/2d. Then 

T (I) = > 1/2) 
= , - ( x x * )  = , - ( x ' x )  = - e ) + )  > 0 ,  

and this shows that 7- n is non-zero. | 

In the formulation of the main result below, M2~ denotes the CAR-algebra, or 

equivalently the UHF-algebra of type 2 °°. 

It is shown in [13, Corollary 9.3] that  the following three conditions are 

equivalent for a separable, stable (or unital), nuclear C*-algebra B: 

(1) B ~ - B ® O o o .  

(2) B is purely infinite and approximately divisible. 

(3) B is traceless and approximately divisible. 
8 oo The C*-algebra (9o0 is the Cuntz algebra generated by a sequence { n}n=l of 

isometries with pairwise orthogonal range projections. Pure infiniteness of (non- 

simple) C*-algebras was defined in [12] (see also the Introduction). A (possibly 

non-unital) C*-algebra B is said to be a p p r o x i m a t e l y  d iv is ib le  if for each 

natural number k there is a sequence of unital *-homomorphisms 

~bn: Mk G Mk+l -+ .A4(S) 

such that ¢,~(x)b - b¢~(x) -+ 0 for all x E Mk ~F Mk+l and for all b E B, cf. [12, 

Definition 5.5]. The tensor product A ® M2~ is approximately divisible for any 

C*-algebra A. 

THEOREM 3.2: Put  B = ..410,1 ] ® M2~, where .41o,1] is as defined in (2.1). Then: 

(1) 13 is an inductive limit 

Co(J0, 1), Mkl)  -'+ Co(J0, 1), Mk2) --+ C0([0, 1), Mka) - -~""  --+ ]3, 
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for some natural numbers kl, k2, k3,. • .. In particular, B is an AH-algebra. 
(2) B is traceless, purely infinite, and B ~ B ® 0o0. 

It is shown in Proposition 5.2 below that .41o,1] ~ B. We stress that this fact 

will not be used in the proof of Theorem 4.2 below. 

Proof: Part (1) follows immediately from the construction of A[0,1] and from 

the fact that M2~ is an inductive limit of matrix algebras. 

(2) The property of being traceless is preserved after tensoring with M2o¢, 

so B is traceless by Proposition 3.1. As remarked above, B is approximately 

divisible, A[o,1] and hence /3 are stable by Proposition 2.2, and as B is also 

nuclear and separable it follows from [13, Corollary 9.3] (quoted above) that /3 

is purely infinite and O~-absorbing. | 

The C*-algebra/3 is stably projectionless, and, in fact, every purely infinite AH- 

algebra is (stably) projectionless. Indeed, any projection in an AH-algebra is 

finite (in the sense of Murray and yon Neumann), and any non-zero projection 

in a purely infinite C*-algebra is (properly) infinite, cf. [12, Theorem 4.16]. 

It is impossible to find a simple purely infinite AH-algebra, because all simple 

purely infinite C*-algebras contain properly infinite projections. 

4. An application to AF-embeddability 

We show here how Theorem 3.2 leads to a new proof of the recent theorem of 

Ozawa that the cone and the suspension over any exact separable C*-algebra 

are AF-embeddable, [16]. 
It is well-known that any ASH-algebra, hence any AH-algebra, and hence 

the C*-algebras A[0,1] and B from Theorem 3.2 are AF-embeddable. For the 

convenience of the reader we include a proof of this fact--the proof we present is 

due to Kirchberg. (An ASH-algebra is a C*-algebra that arises as the inductive 

limit of a sequence of C*-algebras each of which is a finite direct sum of basic 

building blocks: sub-C*-algebras of Mn(Co (f~))--where n and 12 are allowed to 

vary.) 

An embedding of A[0,1] into an explicit AF-algebra is given in Section 6. 

PROPOSITION 4.1 (Folklore): Every ASH-algebra admits a faithful embedding 

into an AF-a]gebra. 

Proof: Note first that if A is a sub-C*-algebra of Mn(Co(~)), then its envelop- 

ing von Neumann algebra A** is isomorphic to (~kn=l Mk(Ck) for some (possi- 

bly trivial) abelian von Neumann algebras C1, C2,. . . ,  Cn. If C is an abelian von 
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Neumann algebra and if D is a separable sub-C*-algebra of Mk(C), then there 

is a (separable) sub-C*-algebra D1 of Mk(C) that  contains D and such that  

D1 ~- Mk(C(X)) ,  where X is a compact Hausdorff space of dimension zero. In 

particular, D1 is an AF-algebra. 

To see this, let Do be the separable C*-algebra generated by D and the matrix 

units of Mk C_ Mk(C). Then Do = Mk(Do) for some separable sub-C*-algebra 

:Do of C. Any separable sub-C*-algebra of a (possibly non-separable) C*-algebra 

of real rank zero is contained in a separable sub-C*-algebra of real rank zero. 

(This is obtained by successively adding projections from the bigger C*-alge- 

bra.) Hence :Do is contained in a separable real rank zero sub-C*-algebra 791 

of C. It follows from [4] that  7)1 -~ C(X)  for some zero-dimensional compact 

Hausdorff space X. Hence D1 = Mk (:D1) is as desired. 

Assume now that  B is an ASH-algebra, so that  it is an inductive limit 

,01 ¢2 Oa 
B1 > B2 > Ba > . . .  > B, 

where each Bn is a finite direct sum of sub-C*-algebras of Mm(Co (ft)). Passing 

to the bi-dual we get a sequence of finite von Neumann algebras 

, > , . . . .  

Use the observation from the first paragraph (now applied to direct sums of 

basic building blocks) to find an AF-algebra D1 such that B1 C_ D1 C_ B~*. Use 

the observation again to find an AF-algebra D2 such that  C*(¢;*(D1), B2) C_ 

D2 _C B~*. Continue in this way and find, at the nth  stage, an AF-algebra Dn 

such that  ~ n - l ~  n- l  j, _ _ B~* C *r°/'** rD ~ Bn) C Dn C . It then follows that  the inductive 

limit D of 

D1 C V  D2 ¢~*> D3 ¢~*~ "'" ~ D 

is an AF-algebra that  contains B. | 

THEOREM 4.2 (Ozawa): The cone CA = C0([0, 1), A) over any separable exact 

C*-algebra A admits a faithful embedding into an AF-edgebra. 

Proof: By a renowned theorem of Kirchberg any separable exact C*-algebra 

can be embedded into the Cuntz algebra 02 (see [11]), and hence into Ooo 

(the latter because (92 can be embedded--non-unitally--into (9oo). It therefore 

suffices to show that  C0oo = Co([0, 1)) ® 000 is AF-embeddable. It is clear 

from the construction of B in Theorem 3.2 that  Co([0, 1)) admits an embedding 
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into the C*-algebra B. (Actually, one can embed C0([0, 1)) into any C*-algebra 

that  absorbs (90o.) As B ~ B ® (90o, we can embed CO0o into/3.  Now, /3 is 

an AH-algebra and therefore AF-embeddable, cf. Proposition 4.1, so CO0o is 

AF-embeddable. | 

Ozawa used his theorem in combination with a result of Spielberg to conclude 

that the class of AF-embeddable C*-algebras is closed under homotopy invari- 

ance, and even more: If A is AF-embeddable and B is homotopically dominated 

by A, then B is AF-embeddable. 

The suspension S A  = Co((O, 1), A) is a sub-C*-algebra of C A ,  and so it follows 

from Theorem 4.2 that  also the suspension over any separable exact C*-algebra 

is AF-embeddable. 

No simple AF-algebra contains a purely infinite sub-C*-algebra. In fact, any 

AF-algebra, that has a purely infinite sub-C*-algebra, must have uncountably 

many ideals: 

PROPOSITION 4.3: Suppose  that ~: A -+ B is an embedd ing  of a pure ly  in~ni te  

C*-algebra A into an AF-algebra B .  Le t  a be a non-zero pos i t ive  e lement  in 

Im(~). For each t in [0, I]al]] let It be the dosed  two-sided idea / in  B generated 

by (a - t)+. Then  the m a p  t ~ IiMl_t defines an in ject ive  order embedd ing  o f  

the interva/ [0, Ilall] into the idea/ lat t ice o r B .  

Proof: Since A is traceless (being purely infinite, cf. [12]), Im(~) N Dora(T) C_ 

Ker@) for every trace ~- on B. 

Let 0 ~ t < s <_ Ilall be given. We show that Is is strictly contained in It. Find 

a projection p in (a - t ) + B ( a  - t)+ such that I[(a - t)+ - p(a - t)+Pll < s - t. 

There is a trace ~-, defined on the algebraic ideal in B generated by p, with 

T(p) = 1. We claim that 

/~ _C Zer(T) C Dom(T) C_/t, 

and this will prove the proposition. To see the first inclusion, there is d in 

B such that (a - s)+ = d*p(a - t )+pd (use for example [13, Lemma 2.2 and 

(2.1)]). Therefore ( a - s ) +  belongs to the algebraic ideal generated by p, whence 

(a - s)+ E Im(~) N Dora(T) C_ Ker(T). This entails that I8 is contained in the 

kernel of T. 

The strict middle inclusion holds because 0 < T(p) < oo. The last inclusion 

holds because p belongs to (a - t ) + B ( a  - t)+ C_ It.  | 

It follows from Proposition 5.1 below that no AF-algebra can have ideal lattice 

isomorphic to [0, 1], and so the order embedding from Proposition 4.3 can never 
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be surjective. In Section 6 we show that  one can embed a (stably projectionless) 

purely infinite C*-algebra into the AF-algebra .4a, where 12 is the Cantor set. 

The ideal lattice of .4a is the totally ordered and totally disconnected set ~. 

5. F u r t h e r  p r o p e r t i e s  of  t h e  a lgebras  .AT 

Nuclear separable C*-algebras that absorb (_9oo have been classified by Kirchberg 

in terms of an ideal preserving version of Kasparov's KK-theory,  see [9]. It is 

not easy to decide when two such C*-algebras with the same primitive ideal 

space are KK-equivalent in this sense. There is, however, a particularly well 

understood special case: If A and B are nuclear, separable, stable C*-algebras 

that  absorb the Cuntz algebra (02, then A is isomorphic to B if and only if A 

and B have homeomorphic primitive ideal spaces (cf. Kirchberg, [9]). 

We show in this section that  .410,1] - .4[0,1] ® O ~  and that .41o,1] is isomorphic 
to the C*-algebra B from Theorem 3.2. It is shown in a forthcoming paper, [14], 

that  .4[0,1] ~ .41o,1] ® 592 (using an observartion that .41o,1] is zero homotopic 
in an ideal-system preserving way, i.e., there is a *-homomorphism ~: A[0,1] 

Co(J0, 1), A[0,1]) such that evo o q2 = idato.1 ] and ff2(J) C_ Co([0, 1), J) for every 
closed two-sided ideal J in .41o,1]). Thus it follows from Kirchberg's theorem that  

.4[0,1] is the unique separable, nuclear, stable, 592-absorbing C*-algebra whose 
ideal lattice is (order isomorphic to) [0, 1]. It seems likely (but remains open) 
that any separable, nuclear, traceless C*-algebra with ideal lattice isomorphic 

to [0, 1] must absorb 592 and hence be isomorphic to .410,1]. 

Not all nuclear, separable C*-algebras, whose ideal lattice is isomorphic to 
[0, 1], are purely infinite (or traceless) as shown in Proposition 5.4 below. 

We derive below a couple of facts about C*-algebras that have ideal lattice 

isomorphic to [0, 1]: 

PROPOSITION 5.1: Let D be a C*-algebra with ideal lattice order isomorphic 

to [0, 1]. Then D is stably projectionless. If D moreover is purely infinite and 

separable, then D is necessarily stable. 

Proof'. Since D and D ® ~ have the same ideal lattice it suffices to show that  

D contains no non-zero projections. Let {It [ t C [0, 1]} be the ideal lattice 

of D (such that  It C Is whenever t < s). Suppose, to reach a contradiction, 
that D contains a non-zero projection e. Let Is be the ideal in D generated 
by e. The ideal lattice of the unital C*-algebra eDe is then {eIte t t e [0, s]} 
and eIte C eIre whenever 0 < t < r < s. This is in contradiction with the 
well-known fact that any unital C*-algebra has a maximal proper ideal. 
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Suppose now that  D is purely infinite and separable. To show that  D is stable 

it suffices to show that  D has no (non-zero) unital quotient, cf. [12, Theorem 

4.24]. The ideal lattice of an arbitrary quotient D/Is of D is equal to {It~Is [ t • 
Is, 1]}, and this lattice is order isomorphic to the interval [0, 1] (provided that  

Is ~ I1 = D). It therefore follows from the first part of the proposition that  

D/I~ has no non-zero projection and D/Is is therefore in particular non-unital. 
| 

PROPOSITION 5.2: .AT '~ .AT ® M2~ ® ]C for every compact subset T of ]~. 

Proof: It was shown in Proposition 2.2 that  .AT is stable. We proceed to 

show that  AT is isomorphic to AT ® M2~. Recall that  An = Co (To, M2,~ ), put 

An = C(T, M2~), and consider the commutative diagram: 

i1~01i ~fl2i3~3 ~ > 2 ~ > " ' "  ~ .AT 

where ~n is as defined in (2.2), and where ~n: A n  ~ An+l is defined using the 

same recipe as in (2.2). The inductive limit C*-algebra A is unital, each An is 

an ideal in An, and AT is (isomorphic to) an ideal in A. 

We show that  A -~ .4 ® M2~. This will imply that  AT is isomorphic to an 

ideal of A® M2~. Each ideM in A® M2~ is of the form I ® M2~ for some ideal 

I in ~ .  As M2~ ~ M2~ ® M2~ it will follow that  .AT ~ AT ® M2~. 

By [2, Proposition 2.12] (and its proof), to prove that  .4 ~ AQM2~ it suffices 

to show that  for each finite subset G of A and for each c > 0 there is a unital 

*-homomorphism A: M2 ~ A such that  ]IA(x)g - gA(x)]] _< ¢[Ix]] for all x • M2 

and for all g • G. We may assume that  G is contained in ~ , ~ ( A n )  for some 

natural number n. Put  H --1 = ~ , n ( G ) .  It now suffices to find a natural number 

k and a unital *-homomorphism A: M2 -+ A~+k such that  

(5.1) [IA(X)~n+k,n(h) -- ~n+k,n(h)A(X)[[ <_ ~[IXl[, X e M2, h • H. 

Put  tmin ---- minT,  and find (~ > 0 such that  IIh(t) - h(tmin)H ~ ~/2 for all 

h in H and for all t in T with [t - tminl <: 5. Let {tn} be the dense sequence 

in To used in the definition of AT. Find m _> n such that  Itm - tn~in[ < 6. 

Put  k = m + 1 - n, and organize the elements in X = {tn,tn+l, . . .  ,tin+l} in 
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increasing order and relabel the elements by sl <_ s2 <_ s3 < ""  <_ Sk. Let 

F1, F2 , . . . ,  F2~ be the subsets of X ordered such that F1 = 0 and 

maxF2 = s l ,maxF3 = maxF4 = s2, . . .  ,maxF2~-l+l  . . . . .  maxF2k = Sk. 

Then [Sl -- tmin[ < (~, and so [[h o Xmax FI -- h o ;~max F~ ][ _< ¢ for h E H (we use 

the convention max0 = tmin) ;  and h o XmaxF2j_l  ---- h o )~max F2j when j _> 2 for 

all h. 

We shall use the picture of ~n+k,n given in (2.3), which is valid also for ~n+k,,~. 

However, since the sets F1, F2 , . . . ,  Fk possibly have been permuted, ~ + k , u  and 

the expression in (2.3) agree only up to unitary equivalence. Let A: M2 ~ J~n+k 
be the unital *-homomorphism given by A(x) = d i ag (x ,x , . . . , x )  (with 2 k-1 

copies of x). Use (2.3) and the estimate 

0 
0 h o )~max F2j 0 h o ~lllaX g2j 

_<llxllllh ° XmaxF2j-1 -- h o Xmax F2j 11 ~ CllXll, 

that holds for j = 1, 2 , . . . ,  2 k-l ,  for h C H, and for all x E M2(C) C_ C(T, M2), 

to conclude that (5.1) holds, and hence that  A - A ® M2~. | 

Proposition 5.2 together with Theorem 3.2 yield: 

COROLLARY 5.3: The C*-algebra A[0,1] is purely infinite and 

.A[0,1 ] ~ ,,410,1 ] @ Ooo. 

We conclude this section by showing that the tracelessness of the C*-algebras 

~4[0,1] (established in Proposition 3.1) is not a consequence of its ideal lattice 

being isomorphic to [0, 1]. 

l oo PROPOSITION 5.4: Let { n } n = l  be a sequence of positive integers, and let 

{t,}n~=l be a dense sequence in [0, 1). Put  k l  = 1, put  k,+l  = (ln + 1)kn 

for n >_ 1, and put  Dn = C0([0, 1),Mk.).  Let 1) be the inductive limit of  the 

sequence 
01 ¢2 ~3 

D1 ~ D1 , D2 ~ "'" " 73, 

where ¢,~(f) = diag(f, f , . . . ,  f ,  f o Xt,~) (with In copies of f ) ,  and where the 

map Xt.: [0, 1] --+ [0, 1] as before is given by Xt~ (s) = max{s, t~}. 

It  follows that the ideal lattice of 73 is isomorphic to the interval [0, 1]. 

1 Moreover, i f  1-In=l l~/( ~ + 1) > O, then 73 has a non-zero bounded trace, in 

which case 73 is not stable and not purely infinite. 
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Proof'. An obvious modification of the proof of Proposition 2.1 shows that  the 

ideal lattice of D is isomorphic to [0, 1]. As in the proof of Proposition 5.2 

we construct a unital C*-algebra 7}, in which 7? is a closed two-sided ideal, by 

letting 5 be the inductive limit of the sequence 

¢1 ¢2 Ca 

51 5:  53 ......... - 5 ,  

where /~n  -- C([0, 1], Mk,~.) and ~n (f) = d i a g ( f , . . . ,  f ,  f o Xt,,). Remark that  

5 / v  ~ 5 /D = lim ~ ~ = ~ lim 
----+ 

is a UHF-algebra. If v is a tracial state on 5 that  vanishes on l?, then r is the 

composition of the quotient mapping 5 -+ 5 / / )  and the unique tracial state on 

the UHF-algebra T)/D. It follows that  there is only one tracial state v on 5 

that  vanishes on D. 

Suppose now that  1-in°c__1 ln/(In + 1) > 0. It then follows, as in the construction 

of Goodearl in [6], that  the simplex of tracial states on 5 is homeomorphic to 

the simplex of probability measures on [0, 1] and hence that  5 has a tracial state 

that  does not vanish on / ) .  The restriction of this trace to D is then the desired 

non-zero bounded trace. (Goodearl constructs simple C*-algebras; and where 

f o Xt,, appears in our connecting map ~n, Goodearl uses a point evaluation, i.e., 

the constant function t ~-~ f( tn) .  Goodearl's proof can nonetheless and without 

changes be applied in our situation.) 1 

6. A n  e m b e d d i n g  into  a c o n c r e t e  A F - a l g e b r a  

Let T be a compact subset of R and set To = T \{maxT} .  Then Co(To, M2n) is 

an AF-algebra if and only if T is totally disconnected. It follows that  the C*- 

algebra AT (defined in (2.1)) is an AF-algebra whenever T is totally discon- 

nected. Let f~ denote the Cantor set (realized as the "middle third" subset of 

[0,1], and with the total order it inherits from its embedding in IR). Actually 

any totally disconnected, compact subset of II{ with no isolated points is order 

isomorphic to f~. 

We show here that  the AF-algebra from Theorem 4.2, into which the cone 

over any separable exact C*-algebra can be embedded, can be chosen to be Aa. 
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The ideal lattice of ~4~ is order isomorphic to ft (by Proposition 2.1). In the 

light of Proposition 4.3 and by the fact that  the ideal lattice of an AF-algebra is 

totally disconnected (in an appropriate sense) the AF-algebra ~4~ has the least 

complicated ideal lattice among AF-algebras that  admit embeddings of (stably 

projectionless) purely infinite C*-algebras. 

We begin by proving a general result on when As  can be embedded into AT: 

PROPOSITION 6.1: Let S and T be compact subsets of]IL Set To = T \ { m a x T }  

and So = S \ {max S}. Suppose there is a continuous, increasing, surjective 

function A: T --+ S such that A(To) = So. Let {tn}n°C=l be a sequence in To such 

that {tn}~n_k is dense in To for every k, and put Sn = A(tn). Then {Sn)~=k is 

dense in So for every k, and there is an injective *-homomorphism M: .As --+ .AT, 

when AT and As  are inductive limits as in (2.1) with respect to the sequences 

{t~}~=l and {Sn}~=l, respectively. If  A moreover is injective, then A~ is an 

isomorphism. 

Proo£ There is a commutative diagram: 

(6.1) Co(So ,  M2)  ~1 > Co(So, M4) *~ > Co(So,Ms) ~ ,  " "  • As  

C o ( T o , M 2 ) - - - ~ C o ( T o , M 4 ) ~ - ~ C o ( T o ,  Ms) Ca~ .." , AT 

where A(f) = f o A, and where 

(6.2) (~ 0 ) ,  ~.2n(f) = (~ 0 ) 
~n( f )  = f ° Xs~ f o xt,~ ' 

cf. (2.2). Note that  ~(tmax) = Smax (because A is surjective), and so A(f)(tmax) 

= f(A(tmax)) = f(Sma×) = 0. TO see that  the diagram (6.1) indeed is commuta- 

tive we must check that  A o ~oa = ¢~ o A for all n. By (6.2), 

0 ) 0 ) 
f o x s  " o h  ' ( ¢ n ° A ) ( f ) =  f o A o x t  n ' 

for all f E Co(So,M2~), so it suffices to check that  Xs,, o A = A o Xt,. But 

(Xs~ o A)(x) = m a x { A ( x ) ,  8n} = max{A(x), A(tn)} = A(max{x, tn}) 
= (~ o ~ , , , ) (x) ,  

where the third equality holds because A is increasing. 
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Each map ~ in the diagram (6.1) is injective (because ~ is surjective), so the 

*-homomorphism ~ :  .As ~ .AT induced by the diagram is injective. 

If A also is injective, then each map ~ in (6.1) is an isomorphism in which 

case ~ is an isomorphism. | 

Combine (the proof of) Theorem 4.2 with Proposition 5.2 to obtain: 

PROPOSITION 6.2: The cone and the suspension over any separable exact C*- 

algebra admits an embedding into the AH-algebra A[o,1]. 

LEMMA 6.3: There is a continuous, increasing, surjective map )~: f~ -+ [0, 1] 

that maps [0, 1) into f~o, where ft is the Cantor set and where f~o = f~\{1}. 

Proof: Each x in ft can be written x = ~ n e F  2"3-n for a unique subset F of 

N. We can therefore define ~ by 

It is straightforward to check that A has the desired properties. | 

COROLLARY 6.4: The cone and the suspension over any separable exact C*- 

algebra admits a~l embedding into the AF-algebra A~. 

Proof'. It follows from Proposition 6.1 and Lemma 6.3 that  .A[0,1] can be embed- 

ded into .Aa. The corollary is now an immediate consequence of Proposition 6.2. 
| 

By a renowned theorem of Elliott, [5], the ordered Ko-group is a complete 

invariant for the stable isomorphism class of an AF-algebra. We shall therefore 

go to some length to calculate the ordered group Ko (A~). 

As Ko(.A~) does not depend on the choice of dense sequence {tn}~-i used 

in the inductive limit description of A9, (2.1), it follows in particular from 

Proposition 6.5 below that the isomorphism class of .Aa is independent of this 

sequence. 

The Cantor set f~ is realized as the "middle-third" subset of [0, 1] (so that 0 = 

min f~ and 1 = max f~). Consider the countable abelian group G = Co(f~0, Z[~]) 

where the composition is addition, and where the group of Dyadic rationals Z [1] 

is given the discrete topology. Equip G with the lexicographic order, whereby 

f E G + if and only if either f = 0 or f(to) > 0 for to = sup{t E f~ [ f(t) ~ 0}. 

(The set {t • f~ I f( t)  ~ 0} is clopen because Z[ 1] is discrete, aad so f(to) ¢ 0.) 
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It is easily checked that (G, G +) is a totally ordered abelian group, and hence 

a dimension group. 

PROPOSITION 6.5: Ko(A~) is order isomorphic to the group C0(Yt0,Z[1]) 

equipped with the lexicographic ordering. 

Proof: Let {tn}n~ 1 be any sequence in rio = ft\{1} such that {tk, tk+l, tk+2,...} 
is dense in f~o for all k. Write Aa as an inductive limit with connecting maps 

~n as in (2.1). 

By continuity of/4o and because Ko(Co(flo, M2~)) ~ Co(f~o,Z) (as ordered 

abelian groups) (see e.g. [18, Exercise 3.4]), the ordered abelian group Ko(Af~) 
is the inductive limit of the sequence 

Co( o, z )  , Co( o,Z) , C o ( a o , Z )  . . .  , Ko(A ), 

where an(f) = Ko(:n)(f)  = f + f o Xt~. 
Choose for each n E N a partition sa(n) a(n) A ~  ) } of f~ into clopen I ~ X l  , ~ x  2 , . . . ,  

intervals (written in increasing order) such that 
= a(n+i) ~(n+i) (a) d~ n) " * 2 j - - 1  U " ' 2 j  ' 

(b) tn E A~ n) for infinitely many n, 

(c) U~=ltAl°° 1 (n), A~ n), . . .  , A~n~ )} is a basis for the topology on fL 
i i  ~ ~A(n) A~n), a(n) }, and set Set ~ = k J n = l t  1 , • ""  ~ " ' 2 ~ - 1  

Hn = span{1A~,l I J = 1, 2 , . . . ,  2 n - 1} c_ Co(f~o, Z). 

Note that  1A~ does not belong to C0(f~o, Z) because 1 E A ~  ) . 

We outline the idea of the rather lengthy proof below. We show first that  

an(Hn) C_ Hn+l for all n and that  Un~__l aoo,n(Hn) = Ko(Af~), where aoo,n = 
Ko(qooo,n) is the inductive limit homomorphism from Co(f~o, Z) to Ko(.Af~). We 

then construct positive, injective group homomorphisms fin: Hn -'+ Co(fro, Z[~]) 

that satisfy fln+l o an = /3n for all n, and which therefore induce a positive 

injective group homomorphism fl: Ko(A~) --+ Co(~0, 1 Z[~]). It is finally proved 

that fl is onto and that Ko(Ao) is totally ordered, and from this one can conclude 

that  ~ is an order isomorphism. 

For each interval It, s] M ~ and for each t E fl, 

(6.3) 
( l[r,slna, 

I I r , s ln~  o Xt = ~ l[o,s]nf~, 
LO, 

t < r ,  
r < t < s ,  
t > s .  
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Suppose that A1, A2, . . . ,  A,~ is a partition of ~ into clopen intervals, written in 

increasing order, and that t E Ajo. Then, by (6.3), 

1Aj, j < j0, 
(6.4) 1 A j + l m j o x t  -= 2 " l d j + l m j - l + ' ' ' + l m l ,  j = j 0 ,  

2"ldj, j > jo- 

The lexicographic order on G = Co(~o, Z[I]) has the following description: If 

k _< n and if rl, r2 , . . . ,  rk are elements in Z[1] with rk ~ 0, then 

(6.5) rklAk +rk-llA~_: + ' ' ' + r l l A ~  EG + ~ rk >0. 

It follows from (6.4) that an(Hn) = Hn C_ Hn+l. As f is a basis for the 

topology of ~, the set {1m ] A E f }  generates C0(~o,Z). To prove that 

UnC~=l a~,n(Hn) = g0(Aa) it suffices to show that O~c¢,m(1A) e [.JnaC=l o~,n(Hn) 
for every A in Y and for every m in N. Take A E 9 v and find a natural num- 

ber n >_ m such that 1d belongs to Hn. Let A' be the clopen interval in 

consisting of all points in ~ that are smaller than min A. Then 1A, be- 

longs to Hn, and an,m(1A) belongs to span{1m,, 1A} C_ Hn by (6.4). Hence 

acc ,m(1A)  = aoo,n ( an,m (1A ) ) belongs to (~ ,n  ( Hn ). 
The next step is to find a sequence of positive, injective group homomor- 

phisms fin: Hn --+ G such that/~n+l o an =/~n. (This sequence will then induce 

a positive, injective group homomorphism ~: Ko(An) -~ G.) Each function 

{1m~.) , 1A(~),... , 1d~)_l } ~ G + extends uniquely to a positive group homo- 

morphism Hn ~ G, and so it suffices to specify/~n on this generating set. We 

do so by setting 

j - 1  

(6.6) /3n(1A~) ) = ~(j,j,n)IA~.) + E b ( J , i , n ) I A ~ ) ,  j = 1,2,. . .  ,2 n -- 1, 
i=1 

for suitable coefficients, 5(j, i, n), in Z [1]--to be constructed--such that 5(j, j, n) 
= 2 -k > 0 for some k E N, and such that 1A~) belongs to the image of/~n for 

j = 1,2, . . . ,  2 n - 1. Positivity of ~n will follow from (6.5), (6.6), and the fact 

that 5(j, j, n) > O. 
For n = 1 set ~I(1A~:) ) = 1m~l) , SO that 5(1,1,1) = 1. Suppose that /~n 

has been found. The point tn belongs to A(n) for some jo. The equation 1o 
fln+l(an(1A~))) = Zn(1A~) ) has by (6.4) the solution: 

{ fln(1A~,~)), j < j0, 
: I j - :  

(6.7) B,~+:(1A).)) = : f ln(1A:.))--:~i=:~n(1A:-)) ,  j = j o ,  

½Z,~(1A~-)), j > j0. 
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Extend/~n+l from Hn to Hn+l as follows: 

j - 1  

fln+l(1A~+~l ) =6(j,j,n)lA~+~l + E S( j , i ,n) lA~l ,  j = 1, . . .  ,Jo -- 1, 
i=1 

/~n+l(1A~+1, ) =5(j , j ,n)IA~+~ , j = 1 , . . . , jo  -- 1, 

~n+l(1A(2~+~, ) = ~  (j,j,n)lA~+_l, + -~ 5(j , i ,n) -- E S ( k , i , n )  1A~ , 
k=i 

j = jo ,  
1 

fin+l(1A(2~+l)) =-~( j , j ,n ) lA~+, , ,  j = jo, 

j--1 

1 " " 1 1 L..,..~--"5(J'i'n)lA~" fln+l(1A~+~)) =-~5(3,3, n) A~+]) + -~ 
i=1 

j = j o +  l , . . . , 2 n - 1 ,  

1 ,2n ~n+I(1A(2~+I))=-5~(j,j,n)IA(2~+,,, j = j 0 + l , . . .  --1, 

fln+l (1 A~+~ ) = 1A~:+_,,. 

The coefficients, that appear implicit in these expressions for fln+l (1A~+~), will 

be our 6(j, i, n + 1). 

It follows by induction on n that  each coefficient 6(j , i ,n)  belongs to Z[J] 
and that 6(j , j ,n)  = 2 -k for some k E N (that depends on j and n). The 

formula above for fln+l is consistent with (6.7), and so fln+l o an = Sin. It also 

follows by induction on n that 1A~.~ belongs to Im(/~n) for j = 1 ,2 , . . . ,  2 n - 1. 

This clearly holds for n = 1. Assume it holds for some n > 1 Then 1 ~,~ 
_ • Ad 

belongs to Im(fl~) C_ Im(fl~+x) for j = 1 , 2 , . . . , 2  ~ - 1, and hence 1A~+~I , 

la~+~)..2j_~ = 1A~ ~ -- 1A~ +1~' and 1A(2,~+~ belongs to Ira(fin+l). It is now verified 

that  each fin is as desired. 

To complete the proof we must show that the positive, injective, group ho- 

momorphism fl: Ko(Aa) -+ G is surjective and that fl(Ko(Aa) +) = G +. The 

former follows from the already established fact that 1A belongs to the image of 

fl for all A E 9 v, and from the fact, which follows from Proposition 5.2, that  if 

f belongs to Im(fl), then so does i f  The latter identity is proved by verifying 2 " 

that  Ko(Aa) is totally ordered. 

To show that K0(.An) is totally ordered we must show that either f or - f  

is positive for each non-zero f in Ko(An). Write f = aoo,n(g) for a suitable n 
and g E Co(~to, Z). Let r be the largest point in ~ for which g(r) ~ O. Upon 

replacing f by - f ,  if necessary, we can assume that g(r) is positive. There is a 
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(non-empty) clopen interval A = [s, r] N ~ for which g(t) > 1 for all t in A. Put  

Xk,n :- {tn, t n+ l , - . - ,  tn+k-1 }, Yk,n = Xk,n [7 [0, r], and Zk,~ = Xk,~ n [0, s). By 

(6.3) and an analog of (2.3) we get 

O~n+k,n(g ) ---- y ~  g o  XmaxF ---- Z g o XmaxF 
FC Xk,,~ FC_Yk,,~ 

Z ming(flo) 4- Z 1A o XmaxF 
FCZk,~, FC__Yk,,, ,F~:Zt¢,,~ 

= 2 Izk''l "ming(f~0) + (2 W~'"] - 2lzk'"l)'l[o,r]na. 

NOW 

lim (]Yk,~]- {Zk,~]) = lim IXk,~ N [r,s]l = oo, 
k--+oo k--+oo 

so a~+a,~(g ) _> 0 for some large enough k. But then f = a~,7~+k(c~+k,~(g)) is 

positive. | 
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